A Soil-Science Revolution Upends Plans to Fight Climate Change

A Soil-Science Revolution Upends Plans to Fight Climate Change


User Rating: 5 / 5

Star ActiveStar ActiveStar ActiveStar ActiveStar Active
 

With civilization continuing to pump ever-increasing amounts of carbon dioxide into the atmosphere, perhaps plants — nature’s carbon scrubbers — might be able to package up some of that excess carbon and bury it underground for centuries or longer.

That hope has fueled increasingly ambitious climate change–mitigation plans. Researchers at the Salk Institute, for example, hope to bioengineer plants whose roots will churn out huge amounts of a carbon-rich, cork-like substance called suberin. Even after the plant dies, the thinking goes, the carbon in the suberin should stay buried for centuries. This Harnessing Plants Initiative is perhaps the brightest star in a crowded firmament of climate change solutions based on the brown stuff beneath our feet.

Such plans depend critically on the existence of large, stable, carbon-rich molecules that can last hundreds or thousands of years underground. Such molecules, collectively called humus, have long been a keystone of soil science; major agricultural practices and sophisticated climate models are built on them.

But over the past 10 years or so, soil science has undergone a quiet revolution, akin to what would happen if, in physics, relativity or quantum mechanics were overthrown. Except in this case, almost nobody has heard about it — including many who hope soils can rescue the climate. “There are a lot of people who are interested in sequestration who haven’t caught up yet,” said Margaret Torn, a soil scientist at Lawrence Berkeley National Laboratory.

A new generation of soil studies powered by modern microscopes and imaging technologies has revealed that whatever humus is, it is not the long-lasting substance scientists believed it to be. Soil researchers have concluded that even the largest, most complex molecules can be quickly devoured by soil’s abundant and voracious microbes. The magic molecule you can just stick in the soil and expect to stay there may not exist.

“I have The Nature and Properties of Soils in front of me — the standard textbook,” said Gregg Sanford, a soil researcher at the University of Wisconsin, Madison. “The theory of soil organic carbon accumulation that’s in that textbook has been proven mostly false … and we’re still teaching it.”

   Why does corn grow so well? Scientists think soil microbes play a role

The consequences go far beyond carbon sequestration strategies. Major climate models such as those produced by the Intergovernmental Panel on Climate Change are based on this outdated understanding of soil. Several recent studies indicate that those models are underestimating the total amount of carbon that will be released from soil in a warming climate. In addition, computer models that predict the greenhouse gas impacts of farming practices — predictions that are being used in carbon markets — are probably overly optimistic about soil’s ability to trap and hold on to carbon.

It may still be possible to store carbon underground long term.  Indeed, radioactive dating measurements suggest that some amount of carbon can stay in the soil for centuries. But until soil scientists build a new paradigm to replace the old — a process now underway — no one will fully understand why.

The Death of Humus
Soil doesn’t give up its secrets easily. Its constituents are tiny, varied and outrageously numerous. At a bare minimum, it consists of minerals, decaying organic matter, air, water, and enormously complex ecosystems of microorganisms. One teaspoon of healthy soil contains more bacteria, fungi and other microbes than there are humans on Earth.

The German biologist Franz Karl Achard was an early pioneer in making sense of the chaos. In a seminal 1786 study, he used alkalis to extract molecules made of long carbon chains from peat soils. Over the centuries, scientists came to believe that such long chains, collectively called humus, constituted a large pool of soil carbon that resists decomposition and pretty much just sits there. A smaller fraction consisting of shorter molecules was thought to feed microbes, which respired carbon dioxide to the atmosphere.

This view was occasionally challenged, but by the mid-20th century, the humus paradigm was “the only game in town,” said Johannes Lehmann, a soil scientist at Cornell University. Farmers were instructed to adopt practices that were supposed to build humus. Indeed, the existence of humus is probably one of the few soil science facts that many non-scientists could recite.

What helped break humus’s hold on soil science was physics. In the second half of the 20th century, powerful new microscopes and techniques such as nuclear magnetic resonance and X-ray spectroscopy allowed soil scientists for the first time to peer directly into soil and see what was there, rather than pull things out and then look at them.

What they found — or, more specifically, what they didn’t find — was shocking: there were few or no long “recalcitrant” carbon molecules — the kind that don’t break down. Almost everything seemed to be small and, in principle, digestible.

“We don’t see any molecules in soil that are so recalcitrant that they can’t be broken down,” said Jennifer Pett-Ridge, a soil scientist at Lawrence Livermore National Laboratory. “Microbes will learn to break anything down — even really nasty chemicals.”

Lehmann, whose studies using advanced microscopy and spectroscopy were among the first to reveal the absence of humus, has become the concept’s debunker-in-chief. A 2015 Nature paper he co-authored states that “the available evidence does not support the formation of large-molecular-size and persistent ‘humic substances’ in soils.” In 2019, he gave a talk with a slide containing a mock death announcement for “our friend, the concept of Humus.”

Over the past decade or so, most soil scientists have come to accept this view. Yes, soil is enormously varied. And it contains a lot of carbon. But there’s no carbon in soil that can’t, in principle, be broken down by microorganisms and released into the atmosphere. The latest edition of The Nature and Properties of Soils, published in 2016, cites Lehmann’s 2015 paper and acknowledges that “our understanding of the nature and genesis of soil humus has advanced greatly since the turn of the century, requiring that some long-accepted concepts be revised or abandoned.”

Old ideas, however, can be very recalcitrant. Few outside the field of soil science have heard of humus’s demise.


Newsletter Subscribe